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Abstract Neuronal recordings and computer simula-
tions produce ever growing amounts of data, impeding
conventional analysis methods from keeping pace. Such
large datasets can be automatically analyzed by taking
advantage of the well-established relational database
paradigm. Raw electrophysiology data can be entered
into a database by extracting its interesting charac-
teristics (e.g., firing rate). Compared to storing the
raw data directly, this database representation is sev-
eral orders of magnitude higher efficient in storage
space and processing time. Using two large electrophys-
iology recording and simulation datasets, we demon-
strate that the database can be queried, transformed
and analyzed. This process is relatively simple and
easy to learn because it takes place entirely in Matlab,
using our database analysis toolbox, PANDORA. It
is capable of acquiring data from common recording
and simulation platforms and exchanging data with
external database engines and other analysis toolboxes,
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which make analysis simpler and highly interoperable.
PANDORA is available to be freely used and modi-
fied because it is open-source (http://software.incf.org/
software/pandora/home).
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Introduction

The amount of electrophysiological data is increasing
as more channels can be sampled and recording quality
improves, while rapid advances in computing speed
and capacity (e.g., with grid computing) have enabled
researchers to generate simulation data very quickly
in massive amounts. Especially when diverse and cus-
tomized sets of data analysis are used, proper handling
of this data poses a neuroinformatics challenge (Bjaalie
2008).

Since more than 30 years, relational databases
have been successfully used to manage large amounts
of data (Chamberlin and Boyce 1974; Elmasri and
Navathe 1994). In neuroscience, databases have been
traditionally used to improve laboratory procedures,
record keeping, and data sharing (Shepherd et al. 1998;
Pittendrigh and Jacobs 2003; Hines et al. 2004; Morse
2007; Gardner et al. 2008), but only more recently
they were found to be useful for storing and analyzing
neural data (Prinz et al. 2003, 2004; Calin-Jageman
et al. 2007), and being subjected to data mining (Lytton
2006; Taylor et al. 2006; Günay et al. 2008b). Construct-
ing databases of neural analysis results addresses a
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bottleneck of neuroscience, which is analysis automa-
tion. In contrast, eyeballing or other semi-automatic
analysis procedures would make it intractable to an-
alyze the traces produced by the hundred thousands,
or even millions, of neuron and network models (Prinz
et al. 2003, 2004; Calin-Jageman et al. 2007; Günay et al.
2008a, b), or to analyze the continuous streams from
dozens of electrodes (Nicolelis et al. 2003). Fully auto-
matic analysis was demonstrated by Prinz et al. (2004)
of intracellular data traces from 20 million neuronal
network models, where the analysis results were saved
in a custom database consisting of a collection of text
files. Although reading text files is straightforward, un-
derstanding the organization of their contents requires
specialized tools because of the lack of a querying
capability. For instance, adding the output of a new
analysis method into the text files would entail parsing
and reconstructing thousands of files occupying a space
of several hundred gigabytes. Using a more general
database tool can provide the same functionality much
more easily. Despite the need for database approaches
to neural data analysis, almost no software tool have
been developed to date for general use. Günay et al.
(2008a) used such a tool to study the rat globus pallidus
(GP) by comparing a database of recordings from 146
neurons to a database of 100,602 neuron models. In the
current study, we illustrate the strengths of this data-
base approach, specifically with the PANDORA tool-
box (Günay 2008a, b) employed in the above study.
The PANDORA database approach transforms the
raw data into numerical matrices by collecting its
important aspects (e.g., spike shape and firing rate
characteristics), which enables the cross comparison
between the model and recorded GP neuron data-
bases efficiently. PANDORA works within the Matlab
environment (Mathworks Inc., Natick, MA), which al-
lows accessing other commonly used electrophysiolog-
ical and statistical analysis toolboxes such as Chronux
(Brown et al. 2004; Bokil et al. 2006), FIND (Meier
et al. 2008), BSMART (Cui et al. 2008), and sigTOOL
(Lidierth 2009). Interoperability with other analysis
tools allows both: (1), improving reproducibility and
cross validation of results; and (2), promoting to reuse
existing analysis methods that helps the development
of robust community toolboxes (Cannon et al. 2007;
Günay et al. 2008c; Herz et al. 2008). Interoperability is
achieved by using compatible input and output formats.
PANDORA can import data from several different
electrophysiological acquisition and simulation pro-
grams, and it constructs a self-describing database by
keeping associated metadata in Matlab structures, that
can be exported to several external spreadsheet and
database formats. Here, we describe the specific advan-

tages of using the PANDORA toolbox for electrophys-
iological data analysis, first in analyzing the above GP
dataset (Günay et al. 2008a), and then by extending the
database approach to study a network model dataset
from the lobster stomatogastric ganglion (Prinz et al.
2004; Günay et al. 2008b) to show that the toolbox is
capable of operating on different types of data.

Methods

The PANDORA toolbox defines a methodology to
create searchable databases of electrophysiology data
(see the user manual in Günay 2007, 2008a, b). It
comes as an add-on toolbox to the Matlab computing
and analysis environment (MathWorks Inc., Natick,
MA). PANDORA is distributed free of charge with
an open-source license (Academic Free License version
3.0; http://www.opensource.org/licenses/academic.php),
organized with an object-oriented approach (see Supp.
Methods A.1.1).

Overview of Database Analysis
for Electrophysiological Data

In PANDORA, database analysis consists of the fol-
lowing steps (Fig. 1):

1. Organizing raw data files in a dataset for perform-
ing automatic analysis;

2. Analyzing each raw electrophysiological data trace
by measuring its electrophysiological characteris-
tics (e.g., firing rate);

3. Inserting sets of measured characteristics from all
items of a dataset into a database;

4. Analyzing databases by comparing, merging, join-
ing, reducing dimensions, and calculating cor-
relations, histograms, statistics, and component
analyses;

5. Linking back to raw data traces associated with
particular analysis values found; and

6. Visualizing raw or transformed results in a variety
of graphical representations.

In this paper, we show application of this analysis ap-
proach first to a study of recordings and simulations
from the globus pallidus (GP) of the rat (Günay et al.
2008a), and then to a study of the pyloric network of the
lobster stomatogastric ganglion (Günay et al. 2008b). In
the GP dataset, database analysis starts with identifying
the sources from which to load the data.

http://www.opensource.org/licenses/academic.php
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Fig. 1 Main components
of PANDORA. Raw data
traces are analyzed to create
measurement profiles and
then inserted into the
database matrix along with
metadata. See text for the
details of the required steps

Organizing Data Files into a Dataset
to Create a Database

The model GP neuron dataset contains 100,602 neu-
rons modeled with nine Hodgkin and Huxley (1952)
type ion channels with variable maximal conductance
parameters (Günay et al. 2008a). Each of these models
is simulated five times with different current stimulus
magnitudes. The result was a dataset of more than
500,000 files. Especially with such large datasets, orga-
nizing and keeping track of data files scattered across
many directories becomes challenging. The process of
finding data files, loading the data with correct para-
meters, and inserting the measured characteristics into
profile objects to create databases is automated by
the dataset component in PANDORA (Fig. 1). These
are achieved by keeping, in the dataset, the necessary
information such as the location of raw data files; and
the parameters used to load, preprocess and identify
them (see Supp. Methods A.1.2 for details). Using this
information, the dataset object creates the database
structure after iterating through its data files.

The dataset can process any Matlab-readable data
file. The supported data formats include the outputs of
neural simulators, such as Genesis (Bower and Beeman
1998) and Neuron (Carnevale and Hines 2006), and
outputs of data acquisition programs compatible with the
NeuroShare initiative (http://neuroshare.sourceforge.
net; see Supp. Methods. A.1.3 for a full list of formats).
After the data are loaded into Matlab, they are
analyzed to enter their salient characteristics into a
database.

Measuring Electrophysiological Characteristics
to be Entered into the Database

Interesting electrophysiological characteristics (e.g., fir-
ing rate) that deserve to be entered into the database

must be extracted from loaded data files automatically.
To achieve this, we programmed Matlab functions to
extract a uniform set of characteristics from data trace
files. As such functions for each data type need to
extract different sets of salient characteristics, we group
the functions into separate software components. For
instance, functions for intracellular voltage traces of
the GP dataset are grouped in the data trace com-
ponent (Fig. 1). These functions extract the following
characteristics:

• the voltage mean, minima and maxima;
• action potential (AP) peaks and troughs from volt-

age minima and maxima using a sliding-window
approach;

• firing rate statistics from AP times: mean rate and
inter-spike-intervals (ISIs), their standard devia-
tion and ISI coefficient of variation (ISI-CV);

• the AP initiation point, using complex heuristics
(Sekerli et al. 2004); and,

• using the initiation point, spike shape characteris-
tics such as: the amplitude, rise and fall times, and
the after-hyperpolarization (AHP) depth (Fig. 2a).

In the case when a stimulus is applied to the traces,
additional characteristics must be measured.

Measuring Responses to a Current Injection Stimulus

To test the input resistance of the neurons in the GP
dataset and to find their firing rate as a function of
input current (f/I curve), we used a current injection
pulse (CIP) stimulus, which is commonly employed for
current-clamp recordings and simulations. When there
is a stimulus applied, the change in electrophysiological
characteristics depending on the timing of the stimulus
becomes interesting. With the use of the CIP stimu-
lus protocol, the electrophysiological characteristics of
the activity before, during and the recovery after the

http://neuroshare.sourceforge.net
http://neuroshare.sourceforge.net
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Fig. 2 PANDORA offers functions for automated measurement
of electrophysiological characteristics from intracellular voltage
traces. a Action potential (spike) shape characteristics of thresh-
old, base width, amplitude and afterhyperpolarization (AHP)
annotated on a single spike. b Automatically found spikes anno-
tated on a recorded intracellular trace (PANDORA commands
to obtain this plot are given in Supp. Matlab Code 1)

CIP period can be observed (Fig. 5c). Thus, the above
measurements are replicated for each of these periods
for CIP-applied data traces (cip_trace component
in Supp. Mat. A.3). We also include additional mea-
surements special to CIP-applied traces (described in
Günay et al. 2008a), such as:

• the firing rates at the beginning and at the end of
the CIP period corresponding to the initial response
to current stimulus and the steady-state firing rate
reached,

• the firing rate of the two halves of the recovery
period corresponding to the initial recovery and
steady-state rate reached,

• the ratio of the firing rates in periods before and
after CIP,

• the voltage “sag” when a hyperpolarizing current is
applied to measure the hyperpolarization-activated
inward current (Ih), and

• the firing rate accommodation during the CIP pe-
riod (ratio of last ISI to first ISI).

Once a comprehensive set of measurements are ex-
tracted from electrophysiology traces, they are used
to represent the recorded or simulated neuron in the
absence of the raw traces.

Creating a Database from Measured Dataset Files

A prerequisite to creating a database is having the
measured characteristics uniform across dataset ele-
ments. During the creation, one function of the data
trace component collects all of these characteristics and
places them in a trace profile component object (Fig. 1).
To form the database object, multiple profile objects
are concatenated together into a matrix.

Since the measured characteristics and the parame-
ters of the data files are all numeric, the PANDORA
database object consists of a double-precision numer-
ical matrix and its associated metadata. The metadata
consists of parameters associated with the recording
or simulation such as an identifying number, conduc-
tance values or drug concentrations. The dataset trans-
fers the data and metadata from the files to create
the database structures. To demonstrate this, a simple
example shows how a database can be created from
arbitrary data and metadata (Fig. 3). The metadata
allows giving labels to the indices such as ‘firing_rate’,
‘spike_amplitude’, etc. The labels can be given to the
rows, columns and pages (the third dimension) of the
matrix, although the matrix can hold more dimen-
sions. By convention, columns represent parameters
and measurements, and rows represent independent
observations (e.g., from a neuron, or from one of its
traces with specific parameters). This convention al-
lows specific types of analyses to be performed on this
database.

Database Analysis

Database analysis is performed by asking queries and
applying transformations to a database and placing the
results in new database objects (Supp. Methods A.1.4).
Statistics, histogram, or cross-correlation functions that

>> db_obj =
tests_db([1 2; 3 4],

{’col1’, ’col2’},
{’row1’, ’row2’}, ’a 2x2 DB’)

Fig. 3 A simple example of creating a database from a 2 × 2
arbitrary data matrix. tests_db is the name of the database
component and it also represents the constructor function that
generates such database objects. The function uses its arguments
to generate the database object assigned to the db_obj variable.

The function arguments consist of the matrix data, metadata
to label column and row dimensions, and finally an identify-
ing name for the database (see the Supp. Methods and the
online PANDORA Manual in Günay 2007, 2008a, b for more
details)
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operate on a database produce their results in new
specialized database objects. For instance, when the
histogram of a database column is calculated, the his-
togram bins appear in a new histogram database ob-
ject (histogram_db component in Supp. Mat. A.1.4)
with the bin center and height as columns, which
allows visualization and calculation of statistics such as
the Kullback–Leibler (KL) divergence (Kullback and
Leibler 1951; Johnson and Sinanović 2001; Sinanović
and Johnson 2007, see Supp. Methods A.1.6). Simi-
larly, a database can be subjected to statistics func-
tions such as mean, mode, median, standard deviation,
and standard error that generate a statistics database
(stats_db component). In this database, the number
of samples used for calculating the statistic is reported
separately for each column for downstream analysis
and plotting functions (e.g., see n values in bar plots
of Figs. 5b and 8b) because it may be different due to
missing values in the originating database. These miss-
ing values are represented by the not-a-number (NaN)
symbol of Matlab, and treated specially by various
PANDORA functions (e.g., averaging will skip NaNs).
Since the statistics results are in databases, they can be
queried to find an activity of interest (e.g., histogram
peak, tail, outliers or specific ranges) and the query
results can be used to query the original database to find
the individual neurons that contributed to the desired
activity.

Querying the Database

The database contents can be searched by placing mul-
tiple constraints on the metadata and measured char-
acteristics in database queries. In PANDORA, queries
are expressed in the Matlab language syntax for ad-
dressing vector and matrix indices using parentheses,
allowing the use of Matlab logical expressions (see
Supp. Methods A.1.4 for examples). Returning match-
ing database entries is only a simple application of
queries, and they can be used to achieve more elaborate
tasks. For example, queries were used to find unique
parameter sets for automatically averaging repeated
trials in the GP dataset.

Averaging Repeated Trials in the Database

Often experimental data from repeated trials with
the same recording conditions need to be averaged.
PANDORA’s meanDuplicateParams function (see
Supp. Section A.3) does this by collapsing all database
rows that are equivalent in terms of chosen parameters
(e.g., stimulus conditions) but, at the same time, distin-
guished by other parameters (e.g., neuron identifiers).

The results of the function are the mean and the stan-
dard deviation (STD) of the measured characteristics
corresponding to the repeated rows (see Supp. Mat-
lab Code 2 for an example). After averaging repeated
experimental conditions, we needed to find effects
on characteristics between the changing parameter
conditions.

Multivariate Parameter Analysis

In electrophysiology datasets, it is common to have
multiple recording or simulation parameters. Across
trials, parameters such as drug concentrations and
stimuli magnitude vary. Especially in large datasets,
unavoidable inconsistencies between values of these
parameters makes it harder to find parameter ef-
fects on electrophysiological characteristics. For finding
statistically significant effects, a sufficient number of
consistent parameter values must be identified, which
can be achieved with multivariate analysis methods.
PANDORA has functions to identify consistent values,
at the same time for several parameters, and calculate
statistics from their effects on measured characteristics
(see Supp. Methods A.1.8 for details and examples).
Independent of the parameters, the uniform set of char-
acteristics in the database also made it straightforward
to compare neuron representations to one another.

Comparing Measured Characteristics of Two Neurons

Comparing neuron representations is especially use-
ful to test whether a model neuron successfully sim-
ulates features of recorded neurons. The measured
characteristics in the database represent a neuron in
a vector format, making it easy to compare the char-
acteristics across neurons (see Supp. Methods A.1.10
for PANDORA commands used). We use the nor-
malized Euclidean distance method to calculate a dis-
tance between two vector neuron representations (see
Supp. Methods A.1.9). Although these analysis meth-
ods are described above in the context of the GP
dataset, they can be applied to the analysis of other
types of data.

Database Analysis of a Neuron Activity
Sensor Dataset

To show how to analyze data other than the GP
intracellular voltage recordings in PANDORA (see
Supp. Methods A.1.12), we applied the PANDORA
methodology to a database of 20,250,000 models of the
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Fig. 4 Electrophysiological
activity of the real and model
pyloric networks of the
lobster stomatogastric
ganglion. a Recorded
functional network rhythms
from the pyloric network.
(b, c) Example functional
(b) and non-functional (c)
activity produced by the
model pyloric networks

A B C

pyloric network in the stomatogastric ganglion (STG;
Fig. 4a) of the lobster (Prinz et al. 2004). We used a new
set of simulations of these models where the average
values of calcium-dependent activity sensors (Liu et al.
1998) were saved from the model neurons in each
network to create a sensor dataset (Günay et al. 2008b).
In this dataset, average sensor readings from a single
model network represented the raw data. From the raw
sensor data, we measured the separation between func-
tional and non-functional network models and saved
them as characteristics in a database. These character-
istics included a separation success rate obtained from
an optimal linear classifier using sensor readings (see
Supp. Methods A.1.13). From the characteristics in the
database, this project aimed at identifying sensor para-
meters that can distinguish functional network activity
patterns (Fig. 4b) from non-functional activity (Fig. 4c).

Out of the 20 million networks, we only used a 10
thousand-network subset that was chosen randomly.
We chose this subset because it provides a good rep-
resentation of the entire dataset, which is too large to
analyze directly (Günay et al. 2008b).

Using External Storage for Large Databases

In the sensor database each network model has three
model neurons with 366 sensors with different pa-
rameters, which makes the database especially large.
Therefore, to store the bulk of the data we used an
external MySQL (MySQL AB, Uppsala, Sweden) data-
base. Manageable chunks of 10,000–250,000 networks
from this database was transferred to PANDORA for
analysis. Next, we describe the specific advantages of
the PANDORA database analysis approach, starting
with the analysis done on the GP dataset.

Results

In Günay et al. (2008a), we considered a large model
neuron database for matching the experimentally ob-
served variability in rat globus pallidus (GP) neurons,
and we showed that models matching recordings could
be found efficiently by PANDORA (Fig. 5 shows
that the distributions of model neuron characteristics,

A B C
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Fig. 5 Extracted electrophysiological characteristics were
adequate for comparing model and recorded GP neurons. a
Spontaneous firing rate, action potential (AP) amplitude, and
half-width characteristic distributions from the model neuron
database were similar (symmetric KL divergence 6.19, 1.65, and

0.98 bits, respectively; see Supp. Methods A.1.6) and overlapped
with distributions from the recorded neuron database. b Mean
and standard deviation (STD) of the characteristics displayed in
panel a (1: real, 2: model database). c Raw traces of matching
real (top) and model (bottom) neurons
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obtained only with conductance variations, are highly
similar to that of recorded neurons). Here, we show
in more detail the use of PANDORA in addressing
this and similar problems that require database studies
of electrophysiological recordings and simulations. In
the subsequent sections, we show the advantage of
constructing databases of extracted electrophysiolog-
ical characteristics (such as spike times, spike shape
information, and firing rates) rather than directly using
the raw data traces from real and model GP neurons,
and how these resulting databases of extracted char-
acteristics can easily be queried to find interesting fea-
tures of the neurons. Then, to establish the advantage
of an automated technique over manual analysis of
data, we demonstrate more practical uses of the data-
base for routine maintenance of GP neural data such
as averaging redundant recording trials. The database
approach is useful for more complex parameter analysis
that is often needed for understanding neural data. The
following section describes the multivariate analysis
performed in PANDORA to find the effects of phar-
macological block experiments in GP recordings and
matching model manipulations in the nine conductance
parameters. Furthermore, our approach to extract the
same characteristics from recorded and simulated neu-
rons enabled their direct comparison, thus allowing us
to better analyze parallels between model and real GP
neurons. In the following section, we describe how to
find models with different conductance densities that
best match different recorded GP neurons and de-
scribe their natural variability. Finally, to show that the
PANDORA analysis techniques can be applied to stud-
ies on datasets other than these GP neuron databases,
we describe the database analysis to study a lobster
stomatogastric ganglion neuronal network model in the
final results section (Günay et al. 2008b). This study
concerns 20 million instances of the network model and
aims to find activity sensors that work best for sepa-
ration of functional network activity patterns (Fig. 12
shows that activity sensors with inactivating variables
performed better in these model networks).

Constructing a Database of Extracted
Electrophysiological Characteristics was Efficient

Especially with large datasets (Prinz et al. 2003, 2004;
Calin-Jageman et al. 2007; Günay et al. 2008a), it be-
comes difficult to store, search, and process the raw
data quickly and efficiently for answering specific ques-
tions. Questions can be answered much faster if char-
acteristics (such as firing rate) that pertain to the target
questions are extracted and placed in a more compact
database format. Once interesting entries are found

among the characteristics in the database, the raw data
can be consulted again for validation, visualization,
and further analysis. To access the raw data associated
with the results found, a database must also contain
the recording or simulation parameters as metadata
(e.g., an identifying label, current stimulation ampli-
tude, physiological blocker concentration, etc.).

In Günay et al. (2008a), constructing such a data-
base of extracted electrophysiological characteristics
proved to be an efficient way to examine the overall
distributions of electrophysiological data. The char-
acteristics were extracted from 146 neurons recorded
from the rat globus pallidus (GP) and from 100,602
model GP neurons. Characteristics, including for ex-
ample firing rate, spike width and amplitude, and
afterhyperpolarization depth before, during and af-
ter stimulation (see “Methods”), were extracted from
voltage traces recorded in current-clamp mode (see
“Methods”, Fig. 5c). The extracted databases improved
the efficiency of the analysis by reducing the amount
of data to be accessed: (1) the disk space occupied
by the raw data was reduced from 2.4 gigabytes to
357 kilobytes for the recorded neuron database—a
reduction of about four orders of magnitude; (2) and
the simulation data was reduced from 6.8 gigabytes,
in compressed form, to 109 megabytes in the database
format. These databases of extracted characteristics
were not intended to replace the raw data, but rather
to complement it.

After constructing these two databases, we com-
pared them to judge the quality of the model neurons
in representing the recorded biological neurons (Fig. 5).
Comparing the histograms representing the character-
istic distributions of from both databases indicated that
the varying conductance densities in the models can
explain the natural variability found in GP neurons
(Fig. 5a). Statistics of these characteristics offered a
summary of comparison between the two databases
(Fig. 5b). Highly similar recorded and model neurons
could be found in the databases by using the querying
capabilities of PANDORA (Fig. 5c).

The Database Can be Queried in Matlab for Finding
Specific Neuronal Phenomena

An important advantage of using database-supported
analysis is that we can query the data easily. For in-
stance, in the GP recording database, the bias current
applied to maintain recording quality was varied across
trials from the same cell. To be consistent across trials,
results from recordings with excessive bias currents had
to be removed before interpreting the data. A single,
simple PANDORA query composed of Matlab logical
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Fig. 6 PANDORA’s querying capability allows picking up mod-
els that exhibit characteristics in different regions of a distribu-
tion. a Histogram distribution of the effect of changing the fast
sodium conductance (NaF) from 125 to 250 S/m2 on the action
potential (AP) half-width in the GP model neuron database. b At

a fixed conductance background in two example model neurons
show a large change in AP half-width with increasing NaF.
c Another pair of models show a small change in AP half-width
with increasing NaF

expressions allowed removing rows of characteristics
extracted from such trials (see Supp. Methods A.1.4).

Querying is also useful to find traces or neurons
from the histogram distributions which are outliers, or
best represent an example of a desired activity pat-
tern (Fig. 6). Together with sorting functions, querying
allows finding maximal values from a database, such
as the neuron with the fastest firing rate, with the
shallowest afterhyperpolarization (AHP), or with the
widest spike. Multiple queries can be nested or logically
linked with Matlab logical operators, and additional
functions can be used to form more complex queries
(see Supp. Methods A.1.4).

In PANDORA, a query filters a source data-
base and produces a new database that can be sub-
jected to further analyses (see Supp. Methods A.1.4).
Since the database analysis depended on repetitive
application of queries, we measured the speed of
the querying operations and the calculation of the
characteristics to estimate PANDORA’s performance
(Table 1). The first two rows in the table show the
time it took to extract 202 electrophysiological char-
acteristics from one recorded and one simulated trace,

respectively. Since the time it takes to evaluate the
querying operations varied according to parameters
(e.g., number of rows and columns in a database), the
rest of the time values are functions of these parameters
(see Supp. Methods A.1.5). These numbers can be
projected to estimate the elapsed time for PANDORA
operations over large datasets such as the GP model
database. On a single computer processor, extracting
characteristics from the 100,602 model neurons took
about 55 hours (row 2). It is also possible to extract
them on multiple processors of a computing cluster
by dividing the dataset into pieces, running separate
Matlab processes and then reuniting the results. This
reduces the time needed approximately linearly with
the number of processors. Querying the resulting data-
base for a single question took about 10 seconds (rows
3 and 10).

We also compared the time it takes to access, filter
and index a database to show the overhead for using
database tables rather than simple data matrices. Index-
ing to extract a part of a Matlab data matrix was about
ten times faster than indexing the same data matrix as
a part of a database table because of the function calls

Table 1 Time it took for
PANDORA to perform key
tasks related to extracting
electrophysiological
characteristics and to
applying queries

Time values were averaged
after repeating operations for
each n and m value for 100 or
1000 times

Task n m Time [ms]

1 Extracting characteristics from a 3 s recording trace 1 – 1570
2 Extracting characteristics from a 2 s simulation trace 1 – 1420
3 Query: find a matching column value in a table of n rows (==) 1000 – 77
4 Query: match m column values in a table of n rows (anyRows) 1 1 7
5 1000 1 8
6 1000 100 14
7 Forming a query of m conjunctions (&) for a table of n rows 1 10 16.6
8 1000 10 38.9
9 1000 20 84.9
10 Apply query result to table of n rows and m columns 100 1 4.8
11 100 100 9.6
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Table 2 Comparison of the
time it took between data
indexing operations in Matlab
structures versus with
PANDORA structures

For commands involved in
these operations, see
Supp. Methods A.1.5. Time
values were averaged after
repeating operations for each
n and m value for 1000 times

For n rows and m columns Time [ms]

n = 10 n = 100 n = 100
m = 1 m = 1 m = 10

1 Numerically index a data matrix 0.017 0.019 0.022
2 Numerically index a DB’s data matrix 0.136 0.141 0.141
3 Numerically index DB to create new DB 0.418 0.418 0.821
4 Overloaded numerically index DB 0.472 0.473 0.879

to create new DB
5 Symbolically index DB to create new DB 1.652 1.657 11.251
6 Overloaded symbolically index DB 1.717 1.717 11.333

to create new DB

involved (Table 2, compare row 1 to 2). However, the
overhead generated by the function calls happen once
for each indexing operation since the duration did not
significantly increase with more data items (compare
different n and m values on row 2). Filtering the same
portion of a database table to produce a new table
was another four times slower because of the time
needed to maintain the metadata (compare row 2 to 3).
Because column names appear in the metadata, the
time it took to create a new table was also proportional
to the number of columns involved (row 3, compare
m = 1 to m = 10), but a large number of rows can be
indexed without penalty (compare n = 10 to n = 100).
Using the overloaded parenthesis operators for index-
ing (see Supp. Methods A.1.5) only slightly increased
processing time (compare row 3 to 4). A significant
performance penalty appeared when using symbolic
column names rather than numeric identifiers (rows 5
and 6), which again was independent of the number
of rows indexed. These results show that some of the
routine filtering, indexing and querying operations in
PANDORA are slightly slower compared to similar
operations in Matlab, but they take reasonable times

considering the convenience of providing the meta-
data that allow using symbolic row and column names.
When this convenience is unnecessary, one can operate
on the data matrix of the database directly to gain
speed (line 1; see Supp. Methods A.1.5 for commands
involved).

These queries were instrumental in more systematic
analysis of the GP model neuron database, and allowed
identification of conductance parameter subspaces in
which models exhibited special behavior. For instance,
we found a parameter subspace where the AP half-
width showed a non-monotonic relation to the fast
sodium conductance (NaF) level, which was modulated
by the fast delayed rectifier potassium conductance
(Kv3) level (Fig. 7a). The spike half-width initially de-
creased and then increased with increasing NaF values.
As a second example, a complex query was required for
finding candidate models that had maximal parameter
distance (i.e., greatly differed in their conductance pa-
rameters), but minimal distance in terms of character-
istics (i.e., most similar in activity patterns), compared
to a chosen model. The density plot of database models
in the parameter-characteristic distance plane showed
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Fig. 7 Querying allowed systematic analysis of GP model neuron
conductance parameter space. a Change of spike half-width in
the two-parameter plane of NaF and Kv3 conductances (left) was
displayed with a Matlab image plot, which was a useful method in
depicting multivariate landscapes in the database. A cross-section

of the plane showed the non-monotonic change in the half-width
in the NaF dimension (right). b Density of models according of
their distance in terms of parameters and measures from a chosen
initial model. Each row was normalized to the maximal number
of models found with a given parameter distance
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how such a model could be found (Fig. 7b). This re-
sult from a multi-compartmental GP model neuron of
the rat (Günay et al. 2008a) fortified previous findings
from invertebrates showing that neuron models with
disparate parameters can exhibit similar activity (Prinz
et al. 2004). The database format also enabled automat-
ing routine maintenance operations on neural data.

Automatically Averaging Redundant Trials
in the Database

Electrophysiological data sometimes needs to be ana-
lyzed at different levels of abstraction. On a fine scale,
multiple traces collected from one neuron must be
displayed and analyzed, and on a coarse scale, one must
look at a summary information from each neuron to un-
derstand effects across neurons. PANDORA routines
that allow us to sift, average and collapse parameter
dimensions were essential in switching between these
levels of abstraction. These routines worked on meta-
data that identify one trace or neuron from another.
These metadata can be pharmacological treatments
applied, stimulation parameters and identifying values
for recordings, or model parameters and other similar
identifying values for simulations.

In the above study comparing GP neurons to models,
each row in the real neuron database contained results
from one experimental trial with specific stimulus para-
meters, and therefore each neuron was represented by
multiple rows. This initial database was informative to
find ranges of activity characteristics, but it contained
an unequal number of rows for each stimulus condition

because of the varying number of redundant trials
recorded (Table 3a). To have each stimulus condition
represented once, we averaged results from different
trials (Table 3b). Although this averaging operation
may seem specific to the GP dataset, it can be gen-
eralized because the stimulus parameters were found
by grouping database entries with matching parameters
automatically in PANDORA (see Supp. Matlab Code 2
and “Methods”).

Because many types of statistical analysis require
that each neuron be treated as a single set of results
(such as the histograms in Fig. 5a), we applied a similar
transformation to the database to merge rows with
different stimulus magnitudes into a single row for
each neuron (see Supp. Methods A.1.7). This database
allowed asking questions at the level of neurons, such
as the effects of varying experimental parameters.

Multivariate Parameter Analysis to Find Effects
on Activity Characteristics

PANDORA provides several functions to calculate
parameter effects on electrophysiological activity char-
acteristics. Calculating these effects starts with finding
cases where only one parameter value changes at one
time, and consistently, so that statistically significant
effects can be identified in the experiments or simula-
tions. For example, for finding the effects of the sodium
channel blocker, tetrodotoxin (TTX), the experimenter
must make sure that there are enough cells with con-
trol and TTX-applied conditions where all other
treatment and stimulation parameters were constant.

Table 3 Before averaging, multiple characteristic rows existed in the database representing the same stimulation and recording
conditions from a neuron

A B

pAcip 0 0 100 100 100 pAcip 0 100
PicroTx 0.0001 0.0001 0.0001 0.0001 0.0001 PicroTx 0.0001 0.0001
KynAcid 0.001 0.001 0.001 0.001 0.001 KynAcid 0.001 0.001
TTX 0 0 0 0 0 TTX 0 0
Apamin 0 0 0 0 0 Apamin 0 0
drug 4AP 0 0 0 0 0 drug 4AP 0 0
NeuronId 107 107 107 107 107 NeuronId 107 107
TracesetIndex 109 109 109 109 109 TracesetIndex 109 109
steady rate 0 0 24.6975 26.4614 26.8358 NumDuplicates 2 3

RowIndex 1 2
steady rate 0 25.9982

The tables displayed were transposed to turn rows into columns for efficient display. a Example results of control recordings from
one cell (NeuronId 107) is shown with several parameters and the steady-state firing rate (last row in table “steady rate”). Two entries
existed where the current injection parameter, pAcip, was 0 pA and three entries existed where it was 100 pA. Notice that other drug
application conditions stayed constant and the extracted rate value varied. b After averaging, the database was reduced to the two
unique parameter conditions, the rate characteristic was averaged and a NumDuplicates parameter was added that represented the
number of database rows that were averaged for each condition
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Table 4 Pharmacological treatment parameters and one rate characteristic of four TTX-treated cells selected from a subset of the GP
recording database

PicroTx 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
KynAcid 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
TTX 0 7e − 09 0 7e − 09 0 7e − 09 1.5e − 08 0 0 1e − 08
Apamin 0 0 0 0 0 0 0 0 0 0
drug 4AP 0 0 0 0 0 0 0 0 1e − 04 1e − 04
NeuronId 107 107 108 108 110 110 110 159 159 159
TracesetIndex 109 110 111 112 114 115 116 NaN NaN NaN
D100pA steady rate 25.9982 19.6056 29.9673 22.7628 23.8443 20.9744 13.3892 20.1947 11.8999 12.6017

Conditions applied to a cell can be distinguished by common NeuronId parameter values. Three different TTX concentrations 7, 10
and 15 nM were used variably in these experiments. Notice that the TTX effect on neuron n159 could only be discerned in parameter
backgrounds where the potassium channel blocker, 4AP, was present

PANDORA offers functions to sort the data to identify
traces meeting these conditions and to correctly treat
the missing values (see “Methods”).

In the GP data mentioned above, experiments were
done at different times and under different conditions
yielding a database with several pharmacological treat-
ments applied at concentrations sometimes inconsis-
tent across cells, and with some of the control traces
including different background treatments. Here, we
demonstrate how PANDORA finds multiple measure-
ments with consistent parameters from such complex
datasets, in a small example subset of these data
(Table 4). Based on neuron identifiers and other phar-
macological treatments in this subset, we identified four
background parameter conditions in which only the
target TTX parameter is varying (Fig. 8a). By averaging
results from different background conditions for two
of the TTX parameter values (0 and 7 nM each have

three data points), we found the average firing rate for
different TTX concentrations across different neurons
(Fig. 8b). Similarly, we can calculate the average rate
change with increasing TTX from 0 to 7 nM, which we
call its differential effect (Fig. 8c).

Multivariate parameter analysis was essential in
methodically analyzing the large-scale GP simulation
database which contained all combinations of nine con-
ductance density parameters of the model GP neuron
(Günay et al. 2008a). For each conductance, the dis-
tribution of its differential change on a characteris-
tic described the possible outcomes of a conductance
manipulation, such as in the effect of changing the
NaF conductance between two values on the spike
half-width (Fig. 6a). The average of this distribution
gave a summary of such effects, which we applied
to all the maximal conductance parameters by sepa-
rately isolating each parameter level change (Fig. 9). By
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Fig. 8 TTX block effects on steady-state firing rate (steady-rate)
measured at the end of the CIP period. a Change in the firing
rate with various TTX concentrations (n = 4). Different invariant
parameter backgrounds were separated by the invarValues
function (see “Methods” and Supp. Matlab Code 2 for an exam-
ple program). The parameter backgrounds of each neuron (e.g.,
n107) annotated on the plot were taken from available NeuronIds

of the example subset of the GP cell database (Table 4). b
Mean and standard error of rate for 0 and 7 nM TTX (n = 3),
obtained using the statsMeanSE function from the results of
invarValues. c The change in rate from the control condi-
tion to application of 7 nM TTX (n = 3), displayed using a
Matlab box-plot from the results of the diff2D function (see
Supp. Methods A.1.8)
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Fig. 9 Change in three characteristics for increasing values
of several target maximal conductance parameters shows that
each conductance affected multiple output characteristics in the
model. The change was calculated as the difference in the char-

acteristic for the displayed increase of a parameter value while
other parameters were kept fixed. Bars show the mean and STD
of this change for all combinations of the other background
conductance density parameters

summing the average differential effects from all dif-
ferent levels of a conductance, we obtained a quantity
that represents the general effect of a conductance on
a measured characteristic. By repeating this calcula-
tion over all conductance and characteristic pairs, we
found the general effect of changing each conductance
on each characteristic in a comprehensive interaction
matrix (Fig. 10). This should not be confused with a co-
variance matrix that finds average interactions between
a conductance and characteristic across all parameter
backgrounds because our interaction matrix precisely
contains the differential effect of a conductance when
all other conductances are constant. These modeling
results not only gave a detailed prediction of ion chan-
nel interactions in affecting electrophysiological activ-
ity characteristics, but also allowed us to find parallels
between the real and model GP databases in response
to blocking ion channels (Günay et al. 2008a). Another

summed differences

CaHVA NaP SK Kv3 Kv2

AP threshold

AP amplitude

AP halfwidth

AHP depth

resting potential

H100pA potential

H100pA sag

spont firing rate

D100pA first 100ms rate

D100pA steady rate

D100pA slowdown ratio

H100pA rebound ratio
-1

0

1

Fig. 10 Interaction matrix between maximal conductance para-
meters and extracted characteristics in the model gave a compre-
hensive summary of conductance effects. This summary matrix
was obtained by summing the mean change in characteristics
(Fig. 9) between minimal to maximal values of each parameter

way to compare the two databases is by finding indi-
vidual models based on the activity characteristics that
best match a real neuron.

Cross Comparison Across Neuron Representations
Allowed Finding Model Neurons Best
Matching a Real Neuron

An advantage of extracting activity characteristics from
voltage traces is that the same characteristics are
obtained from both recorded and simulated neural
output, allowing direct comparison. In particular, we
were able to match models to each individual recorded
neuron to quantify the biological heterogeneity found
in the GP nucleus (example model-real neuron match
in Fig. 11a and best matching models for all neurons
in panel C). This is made possible by calculating a
distance in terms of standard deviations (STDs) based
on differences in characteristic profiles (see Table S3 in
Supp. Methods A.1.10).

The distance measure calculated allows more than
finding a single match to a neuron; it allows ranking
models in the database according to their match to real
neurons (Table S3 and Fig. 11b). Some of the char-
acteristics, such as the potential during the −100 pA
current stimulus (−100 pA potential in the figure), is a
bad match for all candidate models, so no improvement
was seen even in the lower ranks. We repeated the
procedure to find the model that best matched each
recorded neuron to get a big picture of the variability
in the GP (Fig. 11c). The distance used in matching
models to neurons can also be used in parameter search
algorithms to optimize the similarity of a model to
a specific recorded neuron profile (see “Discussion”).
Although the analysis of the GP real and model neuron
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Fig. 11 Models best-matching individual GP neurons can be
found quantitatively. a A real neuron and the model that was
found to match it most closely were compared by superimposing
their raw voltage traces for ±100 pA CIP protocols aligned above
their instantaneous firing rates (left), and the spike shape, and
frequency-current (f-I) relationship plots (right). b The color-

coded differences of individual characteristics of the top 50
matching models to the same real neuron, where the leftmost
column represented the best matching model. Differences of
characteristics were color-coded from dark blue (<1 STD) to red
(>3 STDs). c Quality of the best matching models to each of the
146 real neurons visualized in the same way as panel b

databases are very specific, the database operations
presented here can be applied to types of data and
questions of other kinds.

Extending the Methodology to Custom Datasets:
Analysis of a Model Network Database

We applied the above analysis methodology to the sen-
sor database generated from lobster pyloric network
model neurons (see “Methods”). We used this database

to find if different sensor configurations in the network
can perform better at distinguishing functional network
activity patterns. The performance of the sensors is
measured with a success rate characteristic (see Meth-
ods; Günay et al. 2008b). In the configuration with
the same single sensor in each model neuron, we only
considered a database of 366 sensors. In this database,
we compared the success rates obtained with and with-
out inactivating sensor types, and found that inacti-
vating sensors were more successful (Fig. 12a). In the
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Fig. 12 Results of the lobster pyloric network sensor database
analysis with PANDORA. a Success rate histogram of single in-
activating and non-inactivating (DC) sensors, from a pool of 366
sensors, in distinguishing functional network patterns. b Success
rate histogram of the 85,750 FSD sensor triplets in distinguishing

functional network patterns showed up to 88% success. c Scatter
plot of correlation between the sensor reading and the measured
bursting duty cycle characteristic from the combined model of the
anterior burster (AB) and pyloric dilator (PD) cells

configuration with the same set of three sensors in each
model neuron, we considered a larger database of char-
acteristics from 85,750 sensor combinations. With three
sensors, the success rate varied smoothly with changing
sensor combinations in the database and reached up to
88% correct (Fig. 12b). The comparison between the
two configurations indicated that having the three sen-
sors is marginally better (88%) at separating functional
networks than a single sensor (85%).

In addition to the sensor database used for distin-
guishing functional network activity, we constructed a
second type of database to find correlations between
sensor readings and activity characteristics from the
networks’ raw simulated electrophysiology data. From
the voltage traces, we extracted burst characteristics
such as burst duration, network rhythm period, and
duty cycle to construct a database. In the database, we
found that the sensor readings were most correlated
with a cell’s bursting duty cycle (Fig. 12c).

Discussion

We demonstrated the advantages of analyzing elec-
trophysiology datasets by extracting interesting char-
acteristics from the raw data and keeping them in a
database format within the PANDORA framework. In
the dataset of rat GP neuron recordings, the analysis of
the database yielded several insights about the nature
of the heterogeneity in these neurons. In the modeling
dataset created to reflect the properties of these GP
neurons, the database approach resulted in both finding
important relationships between ion channel properties
and intrinsic neuron activity, and finding parallels be-
tween the modeling and recording databases. In prin-
ciple, the same approach can be applied to any type

of dataset from which characteristic properties can be
extracted.

The efficiency and advantages of using a character-
istic database were especially apparent when analyzing
such a large GP modeling database that resulted from
a high-dimensional parameter search. This showed
that other similar parameter search datasets with a
large number of models can benefit from our database
approach. The Matlab platform, that we employed for
PANDORA, improved its interoperability with other
acquisition and simulation programs, and standard data
analysis tools by providing many input and output for-
mats, and by providing a common computing environ-
ment. Finally, thanks to its object oriented software
design (see Supp. Methods A.1.1), new features could
be added to PANDORA and be part of the toolbox
since it is open-source software. We start by discussing
the specific approach taken to build databases in
PANDORA.

Keeping Electrophysiological Features
in a Relational Database Helps Analyze
Experimental Data

Our database approach is based on the principle that
raw data (e.g., membrane voltage traces) can be ana-
lyzed to extract a list of characteristics (see “Methods”,
Fig. 2), which can then be related back to the recording
conditions (e.g., recording channel, stimulus magni-
tude) or simulation parameters (e.g., ion channel densi-
ties, kinetics, compartment lengths) in a database table.
Using such tables of parameters and associated char-
acteristics allows the adoption of the well-established
relational database paradigm (Codd 1970; Chamberlin
and Boyce 1974), which has widespread industry sup-
port with robust theory and application (Elmasri and
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Navathe 1994). In particular, we map common opera-
tions necessary for analyzing electrophysiology datasets
to relational database operations in PANDORA. We
use histograms for finding distributions of interesting
characteristics (Fig. 5), database queries for finding out-
liers (Fig. 6) and other interesting phenomena (Fig. 7),
and custom database operations for averaging and com-
bining recorded characteristics as necessary (Tables 3
and S1). PANDORA can find parameter effects on
measured electrophysiological characteristics by auto-
matically sorting the database for background stimula-
tion and drug parameters where only the designated
drug concentration varied (Table 4 and Fig. 8). We
used this technique to find how GP neurons respond
to drugs such as TTX, 4-AP and apamin, applied at
low concentrations to partially block specific channel
populations (Note that at a regular dose these currents
provide a full block), for testing predictions from the
model neuron database (Günay et al. 2008a).

Recorded and Simulated Data are Treated
Similarly for Validating Model Results

PANDORA treats experimental and modeling data
similarly, allowing the use of identical analysis routines
for both data sets, which was not only economical, but
most importantly allowed direct comparisons between
simulation and physiological data using the measured
characteristics (Fig. 5). This approach becomes particu-
larly valuable to validate simulation results and guide
model development because it is rare when a model
can stand on its own without requiring experimental
validation. Using a distance metric based on the set of
measured characteristics, we compared the feature dis-
tributions in the model database to that of the recorded
neuron database to assess the capacity of the models
to represent the experimentally observed heterogeneity
(Figs. 5, 11; Günay et al. 2008a).

Databases from Brute-force Parameter Exploration
Allow Comprehensive Analysis

We built the database of 100,602 GP model neurons
by exploring the parameter space for all possible com-
binations of the selected conductance density values
(Günay et al. 2008a)—in brute-force fashion (Prinz
et al. 2003, 2004). A brute-force database is special
because the measured characteristics form a full multi-
dimensional matrix indexed by model parameters. In
contrast to the analysis of the recording database that
allowed only finding effects on characteristics at few
values from available drugs, this brute-force matrix per-
mitted finding effects of changing conductance densities

in all-to-all fashion (Figs. 9–10). This novel account of
complete interaction in a mammalian neuron model
fortifies earlier findings that electrophysiological char-
acteristics, such as spike amplitude and afterhyperpo-
larization depth, are affected by multiple ion channels,
and that each channel affects multiple characteristics
(Bean 2007; Günay et al. 2008a).

Model Parameter Optimization Results
can be Analyzed with PANDORA

On the downside, the brute-force approach to para-
meter exploration creates a problem of logistics and
informatics due to the size and number of the files
arising from the high dimensionality of the parameter
space. Finding a unique solution in this space with an
explicitly model-based approach is much more efficient
because the problem is reduced to a linear search,
which was shown to be possible under certain ex-
perimental conditions (Wood et al. 2004; Huys et al.
2006). However, if such an approach cannot be taken,
a common alternative to brute-force exploration is to
find model parameters by minimizing a goodness of
fit value either by following its gradient (Vanier and
Bower 1999; Weaver and Wearne 2006) or by using
an evolutionary approach (Achard and Schutter 2006;
Van Geit et al. 2007; Smolinski et al. 2008; Van Geit
et al. 2008), which are both optimization algorithms.
The PANDORA database approach applies to para-
meter optimization in two ways. First, by providing a
platform for extracting characteristics, it allows defin-
ing fitness measures similar to our neuron compari-
son distances (see Supp. Methods A.1.9). Combining
multiple separate characteristics in a fitness measure
not only allows more precise control of which mea-
sures are more important for parameter optimization
(Achard and Schutter 2006; Van Geit et al. 2007), but
also enables employing a multi-objective approach that
optimize models for each measure independently and
choose best models later (Fonseca and Fleming 1993;
Smolinski et al. 2008).

Second, during the parameter exploration of an op-
timization search, if the intermediate models and their
characteristics are saved into a database, this database
can be subjected to our analysis methodology to inves-
tigate how model behavior changes in various parts of
the model parameter space. Although the optimization
approach does not cover the parameter space equally,
a similarly asymmetric GP recording dataset was sub-
jected to the same analysis (Fig. 8 and Table S1). A
similar impartial model database is obtained by starting
at a known model parameter configuration and per-
forming a local parameter exploration.
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Analysis of Databases from Local Exploration
of Few Parameters

The brute-force database allows querying for interest-
ing local phenomena controlled by few parameters.
For instance, it is interesting for the experimenter if a
conductance modulates the effects of another conduc-
tance on a characteristic by reversing it. This reversing
effect would contradict with the common view that
blocking an ion channel results in a consistent effect
that can be averaged across neurons without loss of
information. We queried the GP model database for
conductances that have reversing effects on the action
potential (AP) half-width and we found that the para-
meters leading to this phenomenon were constrained
to a local region of the fast sodium and fast delayed
rectifier potassium conductances (Günay et al. 2008a).
We generated a new parameter set that expanded this
region with PANDORA to run new simulations. The
results illustrated that reversing effects with these para-
meters in this region are dependent on the parameters
of other ion-channels (Fig. 7a–b). In performing these
analyses, PANDORA showed several advantages due
to the approach we have chosen.

Advantages of a Native Matlab Database Approach

Using a relational database system, such as the Struc-
tured Query Language (SQL) (Chamberlin and Boyce
1974), to aid data analysis increases complexity be-
cause of the division of logic between the languages for
data analysis and database operations. Furthermore,
each piece of software requires additional knowl-
edge and training, which makes the analysis pro-
grams harder to understand, maintain and troubleshoot
(Baxter et al. 2006). In contrast, PANDORA allows
expressing queries as Matlab commands, based on
array indexing and logical operators (see “Methods”
and Supp. Methods A.1.4). This empowers an exper-
imenter, who is familiar with data analysis in Matlab,
to manipulate the data without having to learn how to
use a separate database application. More importantly,
whereas commercial SQL database management sys-
tems do not provide easy access to common analysis
routines for electrophysiological data (such as Oracle
Database (Oracle, Inc., Redwood Shores, CA, USA),
Microsoft SQL Server (Microsoft Corp., Redmond,
WA, USA), or MySQL (MySQL AB, Uppsala,
Sweden)), Matlab offers a suitable environment to con-
duct such analysis using its existing statistical, numeri-
cal, and visualization functions.

Despite the described need for database approaches
to neural data analysis, almost no software systems

have been developed to date for general use. Most
of the large neuroscience database initiatives are tar-
geted for building data and knowledge repositories for
data sharing (Shepherd et al. 1998; Hines et al. 2004;
Gardner et al. 2008; Bjaalie 2008). Few exceptions
are OpenElectrophy (http://neuralensemble.org/trac/
OpenElectrophy) and the Neural Query System (NQS)
(Lytton 2006). The OpenElectrophy project aims to
simplify data analysis and sharing of intra- and extra-
cellular recordings, but it is yet incomplete. NQS is
a mature tool integrated into the Neuron simulator
(Carnevale and Hines 2006) to manage simulations
and record their results in a database. NQS allows
accessing Neuron’s specialized neural analysis routines
(e.g., the multiple-run fitter) and easily tie simulations
to databases. PANDORA can independently be used
by users of either Neuron or Genesis, as well as other
simulators. It is written completely with the object-
oriented extensions of the Matlab scripting language
(see Supp. Methods A.1.1), making it easily extensible
(see Fig. 12) and cross-platform compatible (i.e., the
same scripts work on PC, Macintosh and Windows
operating systems in most cases).

The Matlab environment also offers visualization
features that we integrated into the PANDORA
components: raw data traces can be plotted, optionally
annotated with their extracted characteristics (as in the
AP shape in Fig. 2a); databases can be visualized as
a text table, by exporting to external formats (such
as a SQL database or Microsoft Excel; see Fig. S3),
with scatter plots (Fig. 8), or with statistical error-bar
plots (Fig. 9); and multiple database variables can be
visualized with two- or three-dimensional image plots
(Fig. 7). The plotting tools create a layer on top of
the regular Matlab plotting system (see Supp. Methods
A.1.11).

Interoperability with Other Electrophysiology
Toolboxes and Supported Input Formats

Cross-checking of analysis results and subjecting them
to further analyses are possible without completely
switching to another platform only when the selected
data analysis platform is compatible and interopera-
ble with other programs. Data sharing and interoper-
ability between tools are becoming essential with the
advances in computing capabilities (Gardner et al.
2003; Cannon et al. 2007; Günay et al. 2008c; Bjaalie
2008). Using Matlab has the advantage of provid-
ing easy interoperability with existing tools. Thanks
to the NeuroShare initiative’s Matlab library (http://
neuroshare.sourceforge.net), PANDORA can read the
raw data from several data acquisition programs (see

http://neuralensemble.org/trac/OpenElectrophy
http://neuralensemble.org/trac/OpenElectrophy
http://neuroshare.sourceforge.net
http://neuroshare.sourceforge.net
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“Methods” and Supp. Mat. A.1.3). It can also read the
Hierarchical Data Format (HDF5) files (http://www.
hdfgroup.org). HDF5 was recently proposed as a
standard for electrophysiological data (unpublished
proceedings of the Interoperability Workshop at the
Computational Neuroscience Conference, Portland,
Oregon, July 2008; Herz et al. 2008). In addition,
PANDORA supports reading outputs of various neural
simulators (see “Methods”).

The Matlab environment allows passing data back
and forth between PANDORA and other commu-
nity toolboxes for analysis of electrophysiology data,
such as:

• the Chronux Toolbox (Mitra Lab, Cold Spring Har-
bor Laboratory, NY) that allows frequency spec-
trum and coherence analyses for time-series data
for both point and continuous processes (Brown
et al. 2004; Bokil et al. 2006);

• the FIND toolbox that specializes for analyzing
extracellular recordings (Meier et al. 2007, 2008;
http://find.bccn.uni-freiburg.de);

• the BSMART software package that provides func-
tions for multi electrode recordings (Cui et al.
2008); and

• the sigTOOL package which implements a range of
waveform and spike-train analyses on neuroscience
data (Lidierth 2009).

PANDORA differs from these toolboxes by providing
database support and by its specific analysis routines for
intracellular electrophysiology datasets.

Matlab also offers a Database Toolbox that can
directly access an external database application with-
out the need for PANDORA. It has the advantage
of offering access to an optimized, industry-strength
database, but brings with it the drawbacks of using
an external database application as discussed above.
PANDORA can use the Matlab Database Toolbox
to import and export data between external databases
(see the sql_portal component in Supp. Mat. A.3).
In the analysis of the activity sensor network database,
we used this feature of PANDORA to read data from
an external MySQL database, which allowed accessing
a large amount of data that would not fit into Matlab
directly (see “Methods” and Fig. 12).

Limitations of the Approach

It should be mentioned that PANDORA has limi-
tations due to the simplified approach that we have
taken. The speed of querying operations depends on

the number of rows in a table (i.e., it takes O(n) time)
because no special effort was made to improve indexing
(Table 1 and Supp. Methods A.1.4). Our approach of
querying by overloading operators within the Matlab
environment performs slower than directly accessing a
matrix, but scales well with the number of rows and
columns accessed (see Table 2 and Supp. Methods
A.1.5). Across querying operations, the largest speed
penalty occured in maintaining the metadata that holds
the symbolic row and column names, which should be
avoided for operations that need a large number of
repetitive queries by directly accessing the database’s
data matrix (Supp. Methods A.1.5). In terms of working
memory requirements, the database analysis needs to
maintain one or more copies of the complete data ma-
trix in memory, which limits the size of the analysis by
the computer’s physical memory. A simple workaround
to the memory requirement is to perform analysis of
large databases in several steps with smaller databases.
Another solution is using PANDORA together with
an external commercial database engine that supports
large databases with the help of the Matlab Database
Toolbox (see above).

Future Directions

Despite its advantages, Matlab is a commercial soft-
ware which hinders the free use of PANDORA. How-
ever, a completely free version of PANDORA would
need to be created from scratch because it is not
straightforward to make PANDORA work with an
alternative open-source scientific analysis platform that
is Matlab-compatible. The best such alternative plat-
form is GNU Octave (Eaton 2002), which uses a script-
ing language similar to that of Matlab, although its
current version lacks Matlab’s object-oriented pro-
gramming features on which PANDORA heavily de-
pends. If PANDORA needs to be rewritten, the Python
language seems be a good choice because it offers
efficient, open-source data analysis routines that were
recently employed by several neural simulator and
analysis tools available from the International Neuroin-
formatics Coordinating Facility (INCF) Software Cen-
ter (http://software.incf.org; Bjaalie and Grillner 2007).
NeuroTools is one of these toolsets written in Python to
manage, store and analyze computational neuroscience
simulations (http://neuralensemble.org/). The Java lan-
guage is also appealing because it was employed by the
neuroConstruct simulator tool (Gleeson et al. 2007). In
an ambitious effort similar to ours, the G-node project
proposes to convert the FIND Matlab Toolbox to a
standalone, open-source program (Herz et al. 2008).

http://www.hdfgroup.org
http://www.hdfgroup.org
http://find.bccn.uni-freiburg.de
http://software.incf.org
http://neuralensemble.org/
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